Timeseries forecasting
While direct timeseries prediction is a work in progress Ludwig can ingest timeseries input feature data and make number predictions. Below is an example of a model trained to forecast timeseries at five different horizons.
| timeseries_data | y1 | y2 | y3 | y4 | y5 | 
|---|---|---|---|---|---|
| 15.07 14.89 14.45 ... | 16.92 | 16.67 | 16.48 | 17.00 | 17.02 | 
| 14.89 14.45 14.30 ... | 16.67 | 16.48 | 17.00 | 17.02 | 16.48 | 
| 14.45 14.3 14.94 ... | 16.48 | 17.00 | 17.02 | 16.48 | 15.82 | 
ludwig experiment \
--dataset timeseries_data.csv \
  --config config.yaml
With config.yaml:
input_features:
    -
        name: timeseries_data
        type: timeseries
output_features:
    -
        name: y1
        type: number
    -
        name: y2
        type: number
    -
        name: y3
        type: number
    -
        name: y4
        type: number
    -
        name: y5
        type: number