Add a Dataset
The Ludwig Dataset Zoo is a corpus of various datasets from the web conveniently built into Ludwig.
Ludwig datasets automate managing credentials for downloading data from sites like Kaggle, merging multiple files into a single dataset, sharing data parsing code, and loading datasets directly into data frames which can be used to train Ludwig models.
- The Ludwig Datasets API is contained in
ludwig/datasets/
. - Dataset configs are defined under
ludwig/datasets/configs/
. - Custom loaders for specific datasets are in
ludwig/datasets/loaders/
.
Datasets are made available in Ludwig by providing a dataset config .yaml file. For many datasets, creating this YAML file is the only necessary step.
1. Create a new dataset config¶
Create a new .yaml
file under ludwig/datasets/configs/
with a name matching the name of the dataset. The config file
must have the following required keys:
version
: The version of the datasetname
: The name of the dataset. This is the name which will be imported or passed intoget_datasets(datset_name)
.description
: Human-readable description of the dataset. May contain multi-line text with links.- One of
download_urls
,kaggle_competition
, orkaggle_dataset_id
.
Supported compressed archive and data file types will be inferred automatically from the file extension.
Note
If the dataset has a train/validation/test split used as a benchmark in research papers or Kaggle contests, we recommend preserving the original splits so that Ludwig models may be compared against published results.
For the full set of options, see ludwig.datasets.dataset_config.DatasetConfig
. If the options provided by
DatasetConfig
are sufficient to integrate your dataset, skip ahead to step 3. Test your Dataset.
If, however, the dataset requires other processing not provided by the default dataset loader, continue to step 2.
2. Define a dataset loader if needed¶
If the options provided by DatasetConfig
do not cover the format of your dataset, or if the dataset requires unique
processing before training, you can add python code in a dataset loader.
The loader class should inherit from ludwig.datasets.loaders.dataset_loader.DatasetLoader
, and its module name should
match the name of the dataset. For example, AG News has a dataset loader agnews.AGNewsLoader
in
ludwig/datasets/loaders/agnews.py
.
To instruct Ludwig to use your loader, add the loader
property to your dataset config:
loader: agnews.AGNewsLoader
Datasets are processed in four phases:
- Download - The dataset files are downloaded to the cache.
- Verify - Hashes of downloaded files are verified.
- Extract - The dataset files are extracted from an archive (may be a no-op if data is not archived).
- Transform - The dataset is transformed into a format usable for training and is ready to load.
- Transform Files (Files -> Files)
- Load Dataframe (Files -> DataFrame)
- Transform Dataframe (DataFrame -> DataFrame)
- Save Processed (DataFrame -> File)
For each of these phases, there is a corresponding method in ludwig.datasets.loaders.DatasetLoader
which may be
overridden to provide custom processing.
3. Test your dataset¶
Create a simple training script and ludwig config to ensure that the Ludwig training API runs with the new dataset. For example:
from ludwig.api import LudwigModel
from ludwig.datasets import titanic
training_set, test_set, _, = titanic.load(split=True)
model = LudwigModel(config="model_config.yaml", logging_level=logging.INFO)
train_stats, _, _ = model.train(training_set=training_set, test_set=test_set, model_name="titanic_model")
If you have added a custom loader, please also a unit test to ensure that your loader works with future versions. Following the examples below, provide a small sample of the data to the unit test so the test will not need to download the dataset.
Examples of unit tests:
Note for Kaggle Datasets
In order to test downloading datasets hosted on Kaggle, please follow these instructions to obtain the necessary API credentials. If the dataset is part of a competition, you will also need to accept the competition terms in the Kaggle web UI.
For testing, the Titanic example also illustrates how to use a mock kaggle client in tests. Unit tests should be runnable without credentials or internet connectivity.
4. Add a modeling example¶
Consider sharing an example for how users can train models using your dataset, for example: