Skip to content

Configuration

Configuration Structure

Ludwig models are configured by a single config with the following parameters:

model_type: ecd
input_features: []
output_features: []
combiner: {}
preprocessing: {}
defaults: {}
trainer: {}
hyperopt: {}
backend: {}

The config specifies input features, output features, preprocessing, model architecture, training loop, hyperparameter search, and backend infrastructure -- everything that's needed to build, train, and evaluate a model:

  • model_type: the model variant used for training. Defaults to ECD, which is a neural network based architecture. Also supports GBM, a gradient-boosted machine (tree based model).
  • input_features: which columns from your training dataset will be used as inputs to the model, what their data types are, how they should be preprocessed, and how they should be encoded.
  • output_features: the targets we want the model to learn to predict. The data type of the output feature defines the task (number is a regression task, category is a multi-class classification task, etc.).
  • combiner: the backbone model architecture that takes as input all encoded input features and transforms them into a single embedding vector. The combiner effectively combines individual feature-level models into a model that can accept any number of inputs. GBM models do not make use of the combiner.
  • preprocessing: global preprocessing options including how to split the dataset and how to sample the data.
  • defaults default feature configuration. Useful when you have many input features of the same type, and want to apply the same preprocessing, encoders, etc. to all of them. Overridden by the feature-level configuration if provided.
  • trainer: hyperparameters used to control the training process, including batch size, learning rate, number of training epochs, etc.
  • hyperopt: hyperparameter optimization options. Any param from the previous sections can be treated as a hyperparameter and explored in combination with other config params.
  • backend: infrastructure and runtime options, including what libraries and distribution strategies will be used during training, how many cluster resources to use per training worker, how many total workers, whether to use GPUs, etc.

The Ludwig configuration mixes ease of use, by means of reasonable defaults, with flexibility, by means of detailed control over the parameters of your model. Only input_features and output_features are required while all other fields use reasonable defaults, but can be optionally set or modified manually.

The config can be expressed as a python dictionary (--config_str for Ludwig's CLI), or as a YAML file (--config).

input_features:
    -
        name: Pclass
        type: category
    -
        name: Sex
        type: category
    -
        name: Age
        type: number
        preprocessing:
            missing_value_strategy: fill_with_mean
    -
        name: SibSp
        type: number
    -
        name: Parch
        type: number
    -
        name: Fare
        type: number
        preprocessing:
            missing_value_strategy: fill_with_mean
    -
        name: Embarked
        type: category

output_features:
    -
        name: Survived
        type: binary
{
    "input_features": [
        {
            "name": "Pclass",
            "type": "category"
        },
        {
            "name": "Sex",
            "type": "category"
        },
        {
            "name": "Age",
            "type": "number",
            "preprocessing": {
                "missing_value_strategy": "fill_with_mean"
            }
        },
        {
            "name": "SibSp",
            "type": "number"
        },
        {
            "name": "Parch",
            "type": "number"
        },
        {
            "name": "Fare",
            "type": "number",
            "preprocessing": {
                "missing_value_strategy": "fill_with_mean"
            }
        },
        {
            "name": "Embarked",
            "type": "category"
        }
    ],
    "output_features": [
        {
            "name": "Survived",
            "type": "binary"
        }
    ]
}

Rendered Defaults

Ludwig has many parameter options, but with the exception of input and output feature names and types, all of the other parameters are optional. When a parameter is unspecified, Ludwig assigns it a reasonable default value. Ludwig defines "reasonable" to mean that it is unlikely to produce bad results, and will train in a reasonable amount of time on commodity hardware. In other words, Ludwig defaults are intended to be good baseline configs upon which more advanced options can be layed on top.

Here's an example of a minimal config generated from the following command:

ludwig init_config --dataset ludwig://sst2 --target label --output sst2.yaml
input_features:
- name: sentence
  type: text
output_features:
- name: label
  type: binary

And here is the fully rendered config generated from the following command:

ludwig render_config --config sst2.yaml --output sst2_rendered.yaml
input_features:
-   preprocessing:
        pretrained_model_name_or_path: null
        tokenizer: space_punct
        vocab_file: null
        sequence_length: null
        max_sequence_length: 256
        most_common: 20000
        padding_symbol: <PAD>
        unknown_symbol: <UNK>
        padding: right
        lowercase: true
        missing_value_strategy: fill_with_const
        fill_value: <UNK>
        computed_fill_value: <UNK>
        ngram_size: 2
        cache_encoder_embeddings: false
    encoder:
        type: parallel_cnn
        skip: false
        dropout: 0.0
        activation: relu
        max_sequence_length: null
        representation: dense
        vocab: null
        use_bias: true
        bias_initializer: zeros
        weights_initializer: xavier_uniform
        should_embed: true
        embedding_size: 256
        embeddings_on_cpu: false
        embeddings_trainable: true
        pretrained_embeddings: null
        reduce_output: sum
        num_conv_layers: null
        conv_layers: null
        num_filters: 256
        filter_size: 3
        pool_function: max
        pool_size: null
        output_size: 256
        norm: null
        norm_params: null
        num_fc_layers: null
        fc_layers: null
    active: true
    name: sentence
    type: text
    column: sentence
    proc_column: sentence_5l4qPe
    tied: null
output_features:
-   decoder:
        type: regressor
        fc_layers: null
        num_fc_layers: 0
        fc_output_size: 256
        fc_use_bias: true
        fc_weights_initializer: xavier_uniform
        fc_bias_initializer: zeros
        fc_norm: null
        fc_norm_params: null
        fc_activation: relu
        fc_dropout: 0.0
        input_size: null
        use_bias: true
        weights_initializer: xavier_uniform
        bias_initializer: zeros
    loss:
        type: binary_weighted_cross_entropy
        weight: 1.0
        positive_class_weight: null
        robust_lambda: 0
        confidence_penalty: 0
    active: true
    name: label
    type: binary
    column: label
    proc_column: label_2Xl8CP
    reduce_input: sum
    default_validation_metric: roc_auc
    dependencies: []
    reduce_dependencies: sum
    input_size: null
    num_classes: null
    calibration: false
    preprocessing:
        missing_value_strategy: drop_row
        fallback_true_label: null
        fill_value: null
        computed_fill_value: null
    threshold: 0.5
model_type: ecd
trainer:
    validation_field: label
    validation_metric: roc_auc
    early_stop: 5
    learning_rate: 0.001
    learning_rate_scheduler:
        decay: null
        decay_rate: 0.96
        decay_steps: 10000
        staircase: false
        reduce_on_plateau: 0
        reduce_on_plateau_patience: 10
        reduce_on_plateau_rate: 0.1
        warmup_evaluations: 0
        warmup_fraction: 0.0
        reduce_eval_metric: loss
        reduce_eval_split: training
    epochs: 100
    checkpoints_per_epoch: 0
    train_steps: null
    steps_per_checkpoint: 0
    batch_size: auto
    max_batch_size: 1099511627776
    eval_batch_size: null
    evaluate_training_set: false
    optimizer:
        type: adam
        betas:
        - 0.9
        - 0.999
        eps: 1.0e-08
        weight_decay: 0.0
        amsgrad: false
    regularization_type: l2
    regularization_lambda: 0.0
    should_shuffle: true
    increase_batch_size_on_plateau: 0
    increase_batch_size_on_plateau_patience: 5
    increase_batch_size_on_plateau_rate: 2.0
    increase_batch_size_eval_metric: loss
    increase_batch_size_eval_split: training
    gradient_clipping:
        clipglobalnorm: 0.5
        clipnorm: null
        clipvalue: null
    learning_rate_scaling: linear
    bucketing_field: null
    use_mixed_precision: false
    compile: false
preprocessing:
    sample_ratio: 1.0
    oversample_minority: null
    undersample_majority: null
    split:
        type: random
        probabilities:
        - 0.7
        - 0.1
        - 0.2
defaults:
    audio:
        preprocessing:
            audio_file_length_limit_in_s: 7.5
            missing_value_strategy: bfill
            fill_value: null
            computed_fill_value: null
            in_memory: true
            padding_value: 0.0
            norm: null
            type: fbank
            window_length_in_s: 0.04
            window_shift_in_s: 0.02
            num_fft_points: null
            window_type: hamming
            num_filter_bands: 80
        encoder:
            type: parallel_cnn
            skip: false
            dropout: 0.0
            activation: relu
            max_sequence_length: null
            representation: dense
            vocab: null
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            should_embed: true
            embedding_size: 256
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
            reduce_output: sum
            num_conv_layers: null
            conv_layers: null
            num_filters: 256
            filter_size: 3
            pool_function: max
            pool_size: null
            output_size: 256
            norm: null
            norm_params: null
            num_fc_layers: null
            fc_layers: null
    bag:
        preprocessing:
            tokenizer: space
            missing_value_strategy: fill_with_const
            fill_value: <UNK>
            computed_fill_value: <UNK>
            lowercase: false
            most_common: 10000
        encoder:
            type: embed
            skip: false
            dropout: 0.0
            activation: relu
            vocab: null
            representation: dense
            embedding_size: 50
            force_embedding_size: false
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            output_size: 10
            norm: null
            norm_params: null
            num_fc_layers: 0
            fc_layers: null
    binary:
        decoder:
            type: regressor
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            input_size: null
            use_bias: true
            weights_initializer: xavier_uniform
            bias_initializer: zeros
        loss:
            type: binary_weighted_cross_entropy
            weight: 1.0
            positive_class_weight: null
            robust_lambda: 0
            confidence_penalty: 0
        preprocessing:
            missing_value_strategy: fill_with_false
            fallback_true_label: null
            fill_value: null
            computed_fill_value: null
        encoder:
            type: passthrough
            skip: false
    category:
        decoder:
            type: classifier
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            input_size: null
            num_classes: null
            use_bias: true
            weights_initializer: xavier_uniform
            bias_initializer: zeros
        loss:
            type: softmax_cross_entropy
            weight: 1.0
            class_weights: null
            robust_lambda: 0
            confidence_penalty: 0
            class_similarities: null
            class_similarities_temperature: 0
        preprocessing:
            missing_value_strategy: fill_with_const
            fill_value: <UNK>
            computed_fill_value: <UNK>
            lowercase: false
            most_common: 10000
        encoder:
            type: dense
            skip: false
            dropout: 0.0
            vocab: null
            embedding_initializer: null
            embedding_size: 50
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
    date:
        preprocessing:
            missing_value_strategy: fill_with_const
            fill_value: ''
            computed_fill_value: ''
            datetime_format: null
        encoder:
            type: embed
            skip: false
            dropout: 0.0
            activation: relu
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            embedding_size: 10
            embeddings_on_cpu: false
            output_size: 10
            norm: null
            norm_params: null
            num_fc_layers: 0
            fc_layers: null
    h3:
        preprocessing:
            missing_value_strategy: fill_with_const
            fill_value: 576495936675512319
            computed_fill_value: 576495936675512319
        encoder:
            type: embed
            skip: false
            dropout: 0.0
            activation: relu
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            embedding_size: 10
            embeddings_on_cpu: false
            reduce_output: sum
            output_size: 10
            norm: null
            norm_params: null
            num_fc_layers: 0
            fc_layers: null
    image:
        preprocessing:
            missing_value_strategy: bfill
            fill_value: null
            computed_fill_value: null
            height: null
            width: null
            num_channels: null
            resize_method: interpolate
            infer_image_num_channels: true
            infer_image_dimensions: true
            infer_image_max_height: 256
            infer_image_max_width: 256
            infer_image_sample_size: 100
            standardize_image: null
            in_memory: true
            num_processes: 1
            requires_equal_dimensions: false
        encoder:
            type: stacked_cnn
            skip: false
            conv_dropout: 0.0
            conv_activation: relu
            height: null
            width: null
            num_channels: null
            out_channels: 32
            kernel_size: 3
            stride: 1
            padding_mode: zeros
            padding: valid
            dilation: 1
            groups: 1
            pool_function: max
            pool_kernel_size: 2
            pool_stride: null
            pool_padding: 0
            pool_dilation: 1
            output_size: 128
            conv_use_bias: true
            conv_norm: null
            conv_norm_params: null
            num_conv_layers: null
            conv_layers: null
            fc_dropout: 0.0
            fc_activation: relu
            fc_use_bias: true
            fc_bias_initializer: zeros
            fc_weights_initializer: xavier_uniform
            fc_norm: null
            fc_norm_params: null
            num_fc_layers: 1
            fc_layers: null
        augmentation: []
    number:
        decoder:
            type: regressor
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            input_size: null
            use_bias: true
            weights_initializer: xavier_uniform
            bias_initializer: zeros
        loss:
            type: mean_squared_error
            weight: 1.0
        preprocessing:
            missing_value_strategy: fill_with_const
            fill_value: 0.0
            computed_fill_value: 0.0
            normalization: zscore
            outlier_strategy: null
            outlier_threshold: 3.0
            computed_outlier_fill_value: 0.0
        encoder:
            type: passthrough
            skip: false
    sequence:
        decoder:
            type: generator
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            vocab_size: null
            max_sequence_length: null
            cell_type: gru
            input_size: 256
            reduce_input: sum
            num_layers: 1
        loss:
            type: sequence_softmax_cross_entropy
            weight: 1.0
            class_weights: null
            robust_lambda: 0
            confidence_penalty: 0
            class_similarities: null
            class_similarities_temperature: 0
            unique: false
        preprocessing:
            tokenizer: space
            vocab_file: null
            sequence_length: null
            max_sequence_length: 256
            most_common: 20000
            padding_symbol: <PAD>
            unknown_symbol: <UNK>
            padding: right
            lowercase: false
            missing_value_strategy: fill_with_const
            fill_value: <UNK>
            computed_fill_value: <UNK>
            ngram_size: 2
            cache_encoder_embeddings: false
        encoder:
            type: embed
            skip: false
            dropout: 0.0
            max_sequence_length: null
            representation: dense
            vocab: null
            weights_initializer: uniform
            reduce_output: sum
            embedding_size: 256
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
    set:
        decoder:
            type: classifier
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            input_size: null
            num_classes: null
            use_bias: true
            weights_initializer: xavier_uniform
            bias_initializer: zeros
        loss:
            type: sigmoid_cross_entropy
            weight: 1.0
            class_weights: null
        preprocessing:
            tokenizer: space
            missing_value_strategy: fill_with_const
            fill_value: <UNK>
            computed_fill_value: <UNK>
            lowercase: false
            most_common: 10000
        encoder:
            type: embed
            skip: false
            dropout: 0.0
            activation: relu
            representation: dense
            vocab: null
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            embedding_size: 50
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
            output_size: 10
            norm: null
            norm_params: null
            num_fc_layers: 0
            fc_layers: null
    text:
        decoder:
            type: generator
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            vocab_size: null
            max_sequence_length: null
            cell_type: gru
            input_size: 256
            reduce_input: sum
            num_layers: 1
        loss:
            type: sequence_softmax_cross_entropy
            weight: 1.0
            class_weights: null
            robust_lambda: 0
            confidence_penalty: 0
            class_similarities: null
            class_similarities_temperature: 0
            unique: false
        preprocessing:
            pretrained_model_name_or_path: null
            tokenizer: space_punct
            vocab_file: null
            sequence_length: null
            max_sequence_length: 256
            most_common: 20000
            padding_symbol: <PAD>
            unknown_symbol: <UNK>
            padding: right
            lowercase: true
            missing_value_strategy: fill_with_const
            fill_value: <UNK>
            computed_fill_value: <UNK>
            ngram_size: 2
            cache_encoder_embeddings: false
        encoder:
            type: parallel_cnn
            skip: false
            dropout: 0.0
            activation: relu
            max_sequence_length: null
            representation: dense
            vocab: null
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            should_embed: true
            embedding_size: 256
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
            reduce_output: sum
            num_conv_layers: null
            conv_layers: null
            num_filters: 256
            filter_size: 3
            pool_function: max
            pool_size: null
            output_size: 256
            norm: null
            norm_params: null
            num_fc_layers: null
            fc_layers: null
    timeseries:
        preprocessing:
            tokenizer: space
            timeseries_length_limit: 256
            padding_value: 0.0
            padding: right
            missing_value_strategy: fill_with_const
            fill_value: ''
            computed_fill_value: ''
        encoder:
            type: parallel_cnn
            skip: false
            dropout: 0.0
            activation: relu
            max_sequence_length: null
            representation: dense
            vocab: null
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            should_embed: true
            embedding_size: 256
            embeddings_on_cpu: false
            embeddings_trainable: true
            pretrained_embeddings: null
            reduce_output: sum
            num_conv_layers: null
            conv_layers: null
            num_filters: 256
            filter_size: 3
            pool_function: max
            pool_size: null
            output_size: 256
            norm: null
            norm_params: null
            num_fc_layers: null
            fc_layers: null
    vector:
        decoder:
            type: projector
            fc_layers: null
            num_fc_layers: 0
            fc_output_size: 256
            fc_use_bias: true
            fc_weights_initializer: xavier_uniform
            fc_bias_initializer: zeros
            fc_norm: null
            fc_norm_params: null
            fc_activation: relu
            fc_dropout: 0.0
            input_size: null
            output_size: null
            use_bias: true
            weights_initializer: xavier_uniform
            bias_initializer: zeros
            activation: null
            clip: null
        loss:
            type: mean_squared_error
            weight: 1.0
        preprocessing:
            vector_size: null
            missing_value_strategy: fill_with_const
            fill_value: ''
            computed_fill_value: ''
        encoder:
            type: dense
            skip: false
            dropout: 0.0
            activation: relu
            input_size: null
            output_size: 256
            use_bias: true
            bias_initializer: zeros
            weights_initializer: xavier_uniform
            norm: null
            norm_params: null
            num_layers: 1
            fc_layers: null
hyperopt: null
backend: null
ludwig_version: 0.7.5
combiner:
    type: concat
    dropout: 0.0
    activation: relu
    flatten_inputs: false
    residual: false
    use_bias: true
    bias_initializer: zeros
    weights_initializer: xavier_uniform
    num_fc_layers: 0
    output_size: 256
    norm: null
    norm_params: null
    fc_layers: null