⇅ Number Features
Number Features Preprocessing¶
Number features are directly transformed into a float valued vector of length n
(where n
is the size of the dataset)
and added to the HDF5 with a key that reflects the name of column in the dataset.
No additional information about them is available in the JSON metadata file.
Parameters available for preprocessing are
missing_value_strategy
(defaultfill_with_const
): what strategy to follow when there's a missing value in a number column. The value should be one offill_with_const
(replaces the missing value with a specific value specified with thefill_value
parameter),fill_with_mode
(replaces the missing values with the most frequent value in the column),fill_with_mean
(replaces the missing values with the mean of the values in the column),backfill
(replaces the missing values with the next valid value).fill_value
(default0
): the value to replace the missing values with in case themissing_value_strategy
isfill_with_const
.normalization
(defaultnull
): technique to be used when normalizing the number feature types. The available options arenull
,zscore
,minmax
andlog1p
. If the value isnull
no normalization is performed. If the value iszscore
, the mean and standard deviation are computed so that values are shifted to have zero mean and 1 standard deviation. If the value isminmax
, the minimum is subtracted from values and the result is divided by difference between maximum and minimum. Ifnormalization
islog1p
the value returned is the natural log of 1 plus the original value. Note:log1p
is defined only for positive values.
Number Input Features and Encoders¶
Number features have two encoders.
One encoder (passthrough
) simply returns the raw numerical values coming from the input placeholders as outputs.
Inputs are of size b
while outputs are of size b x 1
where b
is the batch size.
The other encoder (dense
) passes the raw numerical values through fully connected layers.
In this case the inputs of size b
are transformed to size b x h
.
The available encoder parameters are:
norm
(defaultnull
): norm to apply after the single neuron. It can benull
,batch
orlayer
.tied
(defaultnull
): name of the input feature to tie the weights of the encoder with. It needs to be the name of a feature of the same type and with the same encoder parameters.
Passthrough Encoder¶
There are no additional parameters for the passthrough
encoder.
Dense Encoder¶
For the dense
encoder these are the available parameters.
fc_layers
(defaultnull
): a list of dictionaries containing the parameters of all the fully connected layers. The length of the list determines the number of stacked fully connected layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are:activation
,dropout
,norm
,norm_params
,output_size
,use_bias
,bias_initializer
andweights_initializer
. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead.num_layers
(default1
): this is the number of stacked fully connected layers that the input to the feature passes through. Their output is projected in the feature's output space.output_size
(default256
): ifoutput_size
is not already specified infc_layers
this is the defaultoutput_size
that will be used for each layer. It indicates the size of the output of a fully connected layer.use_bias
(defaulttrue
): boolean, whether the layer uses a bias vector.weights_initializer
(defaultglorot_uniform
): initializer for the weight matrix. Options are:constant
,identity
,zeros
,ones
,orthogonal
,normal
,uniform
,truncated_normal
,variance_scaling
,glorot_normal
,glorot_uniform
,xavier_normal
,xavier_uniform
,he_normal
,he_uniform
,lecun_normal
,lecun_uniform
. Alternatively it is possible to specify a dictionary with a keytype
that identifies the type of initializer and other keys for its parameters, e.g.{type: normal, mean: 0, stddev: 0}
. To know the parameters of each initializer, please refer to torch.nn.init.bias_initializer
(defaultzeros
): initializer for the bias vector. Options are:constant
,identity
,zeros
,ones
,orthogonal
,normal
,uniform
,truncated_normal
,variance_scaling
,glorot_normal
,glorot_uniform
,xavier_normal
,xavier_uniform
,he_normal
,he_uniform
,lecun_normal
,lecun_uniform
. Alternatively it is possible to specify a dictionary with a keytype
that identifies the type of initializer and other keys for its parameters, e.g.{type: normal, mean: 0, stddev: 0}
. To know the parameters of each initializer, please refer to torch.nn.init.norm
(defaultnull
): if anorm
is not already specified infc_layers
this is the defaultnorm
that will be used for each layer. It indicates the norm of the output and it can benull
,batch
orlayer
.norm_params
(defaultnull
): parameters used ifnorm
is eitherbatch
orlayer
. For information on parameters used withbatch
see the Torch documentation on batch normalization or forlayer
see the Torch documentation on layer normalization.activation
(defaultrelu
): if anactivation
is not already specified infc_layers
this is the defaultactivation
that will be used for each layer. It indicates the activation function applied to the output.dropout
(default0
): dropout rate
Example number feature entry in the input features list:
name: number_column_name
type: number
norm: null
tied: null
encoder: dense
num_layers: 1
output_size: 256
use_bias: true
weights_initializer: glorot_uniform
bias_initializer: zeros
activation: relu
dropout: 0
Number Output Features and Decoders¶
Number features can be used when a regression needs to be performed. There is only one decoder available for number features: a (potentially empty) stack of fully connected layers, followed by a projection to a single number.
These are the available parameters of a number output feature
reduce_input
(defaultsum
): defines how to reduce an input that is not a vector, but a matrix or a higher order tensor, on the first dimension (second if you count the batch dimension). Available values are:sum
,mean
oravg
,max
,concat
(concatenates along the first dimension),last
(returns the last vector of the first dimension).dependencies
(default[]
): the output features this one is dependent on. For a detailed explanation refer to Output Feature Dependencies.reduce_dependencies
(defaultsum
): defines how to reduce the output of a dependent feature that is not a vector, but a matrix or a higher order tensor, on the first dimension (second if you count the batch dimension). Available values are:sum
,mean
oravg
,max
,concat
(concatenates along the first dimension),last
(returns the last vector of the first dimension).loss
(default{type: mean_squared_error}
): is a dictionary containing a losstype
. The available loss types aremean_squared_error
andmean_absolute_error
.
These are the available parameters of a number output feature decoder
fc_layers
(defaultnull
): a list of dictionaries containing the parameters of all the fully connected layers. The length of the list determines the number of stacked fully connected layers and the content of each dictionary determines the parameters for a specific layer. The available parameters for each layer are:activation
,dropout
,norm
,norm_params
,output_size
,use_bias
,bias_initializer
andweights_initializer
. If any of those values is missing from the dictionary, the default one specified as a parameter of the encoder will be used instead.num_fc_layers
(default 0): this is the number of stacked fully connected layers that the input to the feature passes through. Their output is projected in the feature's output space.output_size
(default256
): ifoutput_size
is not already specified infc_layers
this is the defaultoutput_size
that will be used for each layer. It indicates the size of the output of a fully connected layer.activation
(defaultrelu
): if anactivation
is not already specified infc_layers
this is the defaultactivation
that will be used for each layer. It indicates the activation function applied to the output.norm
(defaultnull
): if anorm
is not already specified infc_layers
this is the defaultnorm
that will be used for each layer. It indicates how the output should be normalized and may be one ofnull
,batch
orlayer
.norm_params
(defaultnull
): parameters used ifnorm
is eitherbatch
orlayer
. For information on parameters used withbatch
see the Torch documentation on batch normalization or forlayer
see the Torch documentation on layer normalization.dropout
(default0
): dropout rateuse_bias
(defaulttrue
): boolean, whether the layer uses a bias vector.weights_initializer
(defaultglorot_uniform
): initializer for the weight matrix. Options are:constant
,identity
,zeros
,ones
,orthogonal
,normal
,uniform
,truncated_normal
,variance_scaling
,glorot_normal
,glorot_uniform
,xavier_normal
,xavier_uniform
,he_normal
,he_uniform
,lecun_normal
,lecun_uniform
. Alternatively it is possible to specify a dictionary with a keytype
that identifies the type of initializer and other keys for its parameters, e.g.{type: normal, mean: 0, stddev: 0}
. To know the parameters of each initializer, please refer to torch.nn.init.bias_initializer
(defaultzeros
): initializer for the bias vector. Options are:constant
,identity
,zeros
,ones
,orthogonal
,normal
,uniform
,truncated_normal
,variance_scaling
,glorot_normal
,glorot_uniform
,xavier_normal
,xavier_uniform
,he_normal
,he_uniform
,lecun_normal
,lecun_uniform
. Alternatively it is possible to specify a dictionary with a keytype
that identifies the type of initializer and other keys for its parameters, e.g.{type: normal, mean: 0, stddev: 0}
. To know the parameters of each initializer, please refer to torch.nn.init.clip
(defaultnull
): If notnull
it specifies a minimum and maximum value the predictions will be clipped to. The value can be either a list or a tuple of length 2, with the first value representing the minimum and the second the maximum. For instance(-5,5)
will make it so that all predictions will be clipped to the[-5,5]
interval.
Example number feature entry (with default parameters) in the output features list:
name: number_column_name
type: number
reduce_input: sum
dependencies: []
reduce_dependencies: sum
loss:
type: mean_squared_error
fc_layers: null
num_fc_layers: 0
output_size: 256
activation: relu
norm: null
norm_params: null
dropout: 0
use_bias: true
weights_initializer: glorot_uniform
bias_initializer: zeros
clip: null
Number Features Metrics¶
The metrics that are calculated every epoch and are available for number features are mean_squared_error
,
mean_absolute_error
, root_mean_squared_error
, root_mean_squared_percentage_error
and the loss
itself.
You can set either of them as validation_metric
in the training
section of the configuration if you set the
validation_field
to be the name of a number feature.