Multi-Task Learning
This example is inspired by the classic paper Natural Language Processing (Almost) from Scratch by Collobert et al..
sentence | chunks | part_of_speech | named_entities |
---|---|---|---|
San Francisco is very foggy | B-NP I-NP B-VP B-ADJP I-ADJP | NNP NNP VBZ RB JJ | B-Loc I-Loc O O O |
My dog likes eating sausage | B-NP I-NP B-VP B-VP B-NP | PRP NN VBZ VBG NN | O O O O O |
Brutus Killed Julius Caesar | B-NP B-VP B-NP I-NP | NNP VBD NNP NNP | B-Per O B-Per I-Per |
ludwig experiment \
--dataset nl_data.csv \
--config_file config.yaml
With config.yaml
:
input_features:
-
name: sentence
type: sequence
encoder: rnn
cell: lstm
bidirectional: true
reduce_output: null
output_features:
-
name: chunks
type: sequence
decoder: tagger
-
name: part_of_speech
type: sequence
decoder: tagger
-
name: named_entities
type: sequence
decoder: tagger