Simple Regression: Fuel Efficiency Prediction
This example replicates the Keras example at https://www.tensorflow.org/tutorials/keras/basic_regression to predict the miles per gallon of a car given its characteristics in the Auto MPG dataset.
MPG | Cylinders | Displacement | Horsepower | Weight | Acceleration | ModelYear | Origin |
---|---|---|---|---|---|---|---|
18.0 | 8 | 307.0 | 130.0 | 3504.0 | 12.0 | 70 | 1 |
15.0 | 8 | 350.0 | 165.0 | 3693.0 | 11.5 | 70 | 1 |
18.0 | 8 | 318.0 | 150.0 | 3436.0 | 11.0 | 70 | 1 |
16.0 | 8 | 304.0 | 150.0 | 3433.0 | 12.0 | 70 | 1 |
ludwig experiment \
--dataset auto_mpg.csv \
--config_file config.yaml
With config.yaml
:
training:
batch_size: 32
epochs: 1000
early_stop: 50
learning_rate: 0.001
optimizer:
type: rmsprop
input_features:
-
name: Cylinders
type: numerical
-
name: Displacement
type: numerical
-
name: Horsepower
type: numerical
-
name: Weight
type: numerical
-
name: Acceleration
type: numerical
-
name: ModelYear
type: numerical
-
name: Origin
type: category
output_features:
-
name: MPG
type: numerical
optimizer:
type: mean_squared_error
num_fc_layers: 2
fc_size: 64