Timeseries forecasting
While direct timeseries prediction is a work in progress Ludwig can ingest timeseries input feature data and make numerical predictions. Below is an example of a model trained to forecast timeseries at five different horizons.
timeseries_data | y1 | y2 | y3 | y4 | y5 |
---|---|---|---|---|---|
15.07 14.89 14.45 ... | 16.92 | 16.67 | 16.48 | 17.00 | 17.02 |
14.89 14.45 14.30 ... | 16.67 | 16.48 | 17.00 | 17.02 | 16.48 |
14.45 14.3 14.94 ... | 16.48 | 17.00 | 17.02 | 16.48 | 15.82 |
ludwig experiment \
--dataset timeseries_data.csv \
--config_file config.yaml
With config.yaml
:
input_features:
-
name: timeseries_data
type: timeseries
output_features:
-
name: y1
type: numerical
-
name: y2
type: numerical
-
name: y3
type: numerical
-
name: y4
type: numerical
-
name: y5
type: numerical