Prediction and Evaluation
After the model has been trained, it can be used to predict the target output features on new data.
We've created a small test dataset containing input features for 10 movie reviews that we can use for testing. Download the test dataset here.
Let's make some predictions on the test dataset!
ludwig predict --model_path results/experiment_run/model --dataset rotten_tomatoes_test.csv
# This step can be skipped if you are working in a notebook, and you can simply
# re-use the model created in the training section.
model = LudwigModel.load('results/experiment_run/model')
predictions, _ = model.predict(dataset='rotten_tomatoes_test.csv')
predictions.head()
docker run -t -i --mount type=bind,source={absolute/path/to/rotten_tomatoes_data},target=/rotten_tomatoes_data ludwigai/ludwig predict --model_path /rotten_tomatoes_data/results/experiment_run/model --dataset /rotten_tomatoes_data/rotten_tomatoes.csv
Running this command will return model predictions. Your results should look something like this:
Index | recommended_probabilities | recommended_predictions | recommended_probabilities_False | recommended_probabilities_True | recommended_probability |
---|---|---|---|---|---|
0 | [0.09741002321243286, 0.9025899767875671] | True | 0.097410 | 0.902590 | 0.902590 |
1 | [0.6842662990093231, 0.3157337009906769] | False | 0.684266 | 0.315734 | 0.684266 |
2 | [0.026504933834075928, 0.973495066165 9241] | True | 0.026505 | 0.973495 | 0.973495 |
3 | [0.022977590560913086, 0.9770224094390869] | True | 0.022978 | 0.977022 | 0.977022 |
4 | [0.9472369104623795, 0.052763089537620544] | False | 0.947237 | 0.052763 | 0.947237 |
A handy ludwig experiment
CLI command is also available. This one command performs training and then prediction using the checkpoint with the best validation metric.
In addition to predictions, Ludwig also computes a suite of evaluation metrics, depending on the output feature's type. The exact metrics that are computed for each output feature type can be found here.
Note
Non-loss evaluation metrics, like accuracy, require ground truth values of the target outputs.
ludwig evaluate --dataset path/to/data.csv --model_path /path/to/model
eval_stats, _, _ = model.evaluate(dataset='rotten_tomatoes_test.csv')
cp rotten_tomatoes_test.csv ./rotten_tomatoes_data
docker run -t -i --mount type=bind,source={absolute/path/to/rotten_tomatoes_data},target=/rotten_tomatoes_data ludwigai/ludwig evaluate --dataset /rotten_tomatoes_data/rotten_tomatoes_test.csv --model_path /rotten_tomatoes_data/results/experiment_run/model
Evaluation performance can be visualized using ludwig visualize
. This enables us to visualize metrics like for omparing performances and predictions across different models. For instance, if you have two models which you want to compare evaluation statistics for, you could use the following commands:
ludwig visualize --visualization compare_performance --test_statistics path/to/test_statistics_model_1.json path/to/test_statistics_model_2.json
from ludwig.visualize import compare_performance
compare_performance([eval_stats_model_1, eval_stats_model_2])
docker run -t -i --mount type=bind,source={absolute/path/to/rotten_tomatoes_data},target=/rotten_tomatoes_data ludwigai/ludwig visualize --visualization compare_performance --test_statistics /rotten_tomatoes_data/path/to/test_statistics_model_1.json /rotten_tomatoes_data/path/to/test_statistics_model_2.json
This will return a bar plot comparing the performance of each model on different metrics like the example below.