One-shot Learning with Siamese Networks
This example can be considered a simple baseline for one-shot learning on the Omniglot dataset. The task is, given two images of two handwritten characters, recognize if they are two instances of the same character or not.
image_path_1 | image_path_2 | similarity |
---|---|---|
balinese/character01/0108_13.png | balinese/character01/0108_18.png | 1 |
balinese/character01/0108_13.png | balinese/character08/0115_12.png | 0 |
balinese/character01/0108_04.png | balinese/character01/0108_08.png | 1 |
balinese/character01/0108_11.png | balinese/character05/0112_02.png | 0 |
ludwig experiment \
--dataset balinese_characters.csv \
--config config.yaml
With config.yaml
:
input_features:
-
name: image_path_1
type: image
encoder:
type: stacked_cnn
preprocessing:
width: 28
height: 28
resize_image: true
-
name: image_path_2
type: image
encoder:
type: stacked_cnn
preprocessing:
width: 28
height: 28
resize_image: true
tied: image_path_1
combiner:
type: concat
num_fc_layers: 2
output_size: 256
output_features:
-
name: similarity
type: binary